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1. ABSTRACT
Addressing the major challenges of software productivity
and performance portability becomes necessary to take ad-
vantage of emerging extreme-scale computing architectures.
As software development costs will continuously increase to
deal with exascale hardware issues, higher-level program-
ming abstractions will facilitate the path to go. There is
a growing demand for new programming environments in
order to improve scientific productivity, to ease design and
implementation, and to optimize large production codes.
We introduce the numerical analysis specific language Nabla
(∇) which improves applied mathematicians productivity,
and enables new algorithmic developments for the construc-
tion of hierarchical composable high-performance scientific
applications. One of the key concept is the introduction
of the hierarchical logical time within the high-performance
computing scientific community. It represents an innovation
that addresses major exascale challenges. This new dimen-
sion to parallelism is explicitly expressed to go beyond the
classical single-program multiple-data or bulk-synchronous
parallel programming models. Control and data concurren-
cies are combined consistently to achieve statically analyz-
able transformations and efficient code generation. Shifting
the complexity to the compiler offers an ease of programming
and a more intuitive approach, while reaching the ability to
target new hardware and leading to performance portabil-
ity.
In this paper, we present the three main parts of the ∇
toolchain: the frontend raises the level of abstraction with its
grammar; the backends hold the effective generation stages,
and the middle-end provides agile software engineering prac-
tices transparently to the application developer, such as: in-
strumentation (performance analysis, V&V, debugging at
scale), data or resource optimization techniques (layout, lo-
cality, prefetching, caches awareness, vectorization, loop fu-
sion) and the management of the hierarchical logical time,
which produces the graphs of all parallel tasks. The refactor-
ing of existing legacy scientific applications is also possible
by the incremental compositional approach of the method.

2. INTRODUCTION
Nabla (∇) is an open-source [4] Domain Specific Language
(DSL) introduced in [6] whose purpose is to translate nu-
merical analysis algorithmic sources in order to generate op-
timized code for different runtimes and architectures. The
objectives and the associated roadmap have been motivated
since the beginning of the project with the goal to provide
a programming model that would allow:

• Performances. The computer scientist should be
able to instantiate efficiently the right programming
model for different software and hardware stacks.

• Portability. The language should provide portable
scientific applications across existing and fore-coming
architectures.

• Programmability. The description of a numerical
scheme should be simplified and attractive enough for
tomorrow’s software engineers.

• Interoperability. The source-to-source process should
allow interaction and modularity with existing legacy
codes.

As computer scientists are continuously asked for optimiza-
tions, flexibility is now mandatory to be able to look for
better concurrency, vectorization and data-access efficiency,
even at the end of long development processes. The self-
evident truth is that it is too late for these optimizations
to be significantly effective with standard approaches. The
∇ language constitutes a proposition for numerical mesh-
based operations, designed to help applications to reach
these listed goals. It raises the level of abstraction, fol-
lowing a bottom-up compositional approach that provides
a methodology to co-design between applications and un-
derlying software layers for existing middleware or heteroge-
neous execution models. It introduces an alternative way, to
go further than the bulk-synchronous way of programming,
by introducing logical time partial-ordering and bringing an
additional dimension of parallelism to the high-performance
computing community.
The remainder of the paper is organized as follow. Section
3 gives an overview of the ∇ domain specific language. Sec-
tion 4 introduces the hierarchical logical time concept. The
different elements of the toolchain are described in section
5. Finally, section 6 provides some evaluations and exper-
imental results for Livermore’s Unstructured Lagrange Ex-
plicit Shock Hydrodynamics (Lulesh) [15] proxy application
on different target architectures.



2.1 Related Work
Because application codes have become so large and the ex-
ploration of new concepts too difficult, domain specific lan-
guages are becoming even more attractive by offering the
possibility to explore a range of optimizations.
Loci[18] is an automatic parallelizing framework that has
been supporting the development of production simulation
codes for more than twenty years. The framework provides a
way to describe the computational kernels using a relational
rule-based programming model. The data-flow is extracted,
transformations are applied to optimize the scheduling of
the computations; data locality can also be enhanced, im-
proving the overall scalability of a Loci application.
SpatialOps which provides the Nebo[11] EDSL is an em-
bedded C++ domain specific language for platform-agnostic
PDE solvers [21]. It provides an expressive syntax, allow-
ing application programmers to focus primarily on physics
model formulation rather than on details of discretization
and hardware. Nebo facilitates portable operations on struc-
tured mesh calculations and is currently used in a number
of multiphysics applications including multiphase, turbulent
reacting flows.
Liszt[10] is a domain-specific language for solving PDE on
meshes for a variety of platforms, using efficient different
parallel models: MPI, pthreads and CUDA. The design of
computational kernels is facilitated: the data dependencies
being taken care of by the compiler.
Terra[9] is a low-level language, designed for high perfor-
mance computing, interoperable with Lua [20]. It is a stat-
ically typed, compiled language with manual memory man-
agement and a shared lexical environment.
Scout[19] is a compiled domain-specific language, targeting
CUDA, OpenCL and the Legion[5] runtime. It does not pro-
vides a source-to-source approach, but supports mesh-based
applications, in-situ visualization and task parallelism. It
also includes a domain-aware debugging tool.
RAJA[14, 16] is a thin abstraction layer consisting of a
parallel-loop construct for managing work and an IndexSet
construct for managing data. The composition of these com-
ponents allows architecture specific details of programming
models, vendor compilers, and runtime implementations to
be encapsulated at a single code site, isolating software ap-
plications from portability-related disruption, while enhanc-
ing readability and maintainability.
Thanks to the source-to-source approach and its exclusive
logical time model, ∇ is able to target some of the above
listed languages. It allows developers to think in terms of
more parallelism, letting the compilation process tools per-
form appropriate optimizations.

Listing 1: Libraries and Options Declaration in ∇
with ℵ , slurm ;

options{
Real o p t i o n d t f i x e d = −1.0e−7;
Real opt i on δ t i n i t i a l = 1 .0 e−7;
Real opt i on δ t courant = 1 .0 e +20;
Real opt i on δ t hydro = 1 .0 e +20;
Real o p t i o n i n i e n e r g y = 3.948746 e+7;
Real opt ion s topt ime = 1 .0 e−2;
Bool opt ion rdq = f a l s e ;
Real opt i on rdq α = 0 . 3 ;
Integer op t i on max i t e r a t i on s = 8 ;
Bool o p t i o n o n l y o n e i t e r a t i o n = f a l s e ;

} ;

3. OVERVIEW OF THE NABLA DSL
This section introduces the ∇ language, which allows the
conception of multi-physics applications, according to a log-
ical time-triggered approach. Nabla is a domain specific
language which embeds the C language. It follows a source-
to-source approach: from∇ source files to C, C++ or CUDA
output ones. The method is based on different concepts: no
central main function, a multi-tasks based parallelism model
and a hierarchical logical time-triggered scheduling.

3.1 Lexical & Grammatical Elements
To develop a ∇ application, several source files must be
created containing standard functions and specific for-loop
function, called jobs. These files are provided to the com-
piler and will be merged to compose the application. The
compilation stages operate the transformations and return
source files, containing the whole code and the required data.
An additional stage of compilation with standard tools must
therefore be done on this output.

Listing 2: Variables Declaration in ∇
nodes{ ce l l s {

Real3 ∂ tx ; Real p ;
Real3 ∂ t2x ; Real3 ε ;
Real3 nForce ; Real3 cForce [ nodes ] ;
Real nMass ; Real d e l v x i ;

} ; } ;

To be able to produce an application from ∇ source files, a
first explicit declaration part is required. Language libraries
have to be listed, options and the data fields -or variables-
needed by the application have to be declared. Libraries
are introduced by the with token: additional keywords will
then be accessible, as well as some specific programming in-
terfaces. For example, the aleph (ℵ) library provides the
matrix keyword, as well as standard algebra functions to
fill linear systems and solve them. The options keyword al-
lows developers to provide different optional inputs to the
application, with their default values, that will be then ac-
cessible from the command line or within some data input
files. Listing 1 provides an example of libraries and options
declaration in ∇.
Application data fields must be declared by the developer:
these variables live on items, which are some mesh-based
numerical elements: the cells, the nodes, the faces or the
particles. Listing 2 shows two declarations of variables liv-
ing on nodes and cells. Velocity (∂tx), acceleration (∂t2x)
and force vector (nForce), as well as the nodal mass (nMass)
for nodes. Pressure (p), diagonal terms of deviatoric strain
(ε) and some velocity gradient (delv_xi) on cells.
Different data types are also available, such as Integer,
Bool, Real or three-dimension vector types Real3, allowing
the insertion of specific directives during the second compi-
lation stage. Unicode letter and some additional mathemat-
ical operators are also provided: the Listing 3 gives some
operators that are actually supported and particularly used
in reduction statements, assignment, conditional, primary
and multiplicative expressions.

Listing 3: Additional ∇ Expressions
<?= >?= ?= @ ∀ ℵ ∧ ∨ ∞ 2 3 √ 3

√ 1
2

1
3

1
4

1
8 ? · × ⊗



3.2 Functions and Jobs Declaration
In order to schedule standard functions and jobs, the lan-
guage provides some new syntactic elements, allowing the
design of logical time-triggered multi-tasking applications.
Data-parallelism is implicitly expressed by the declaration
of jobs, which are functions with additional attributes. The
first attribute is the item on which the function is going
to iterate: it can be a for-loop on cells or nodes for exam-
ple. Input and output variables the job will work with are
also to be provided. Finally an attribute telling when the
job shall be triggered can also be given: this introduces the
logical-time triggered model of parallelism that is presented
in section 4.

Listing 4: ∇ Job Declaration, a for-loop on nodes
nodes void iniNodalMass (void )

in ( ce l l ca lc vo lume )
out (node nodalMass ) @ −6.9{
nodalMass =0.0;
∀ ce l l nodalMass += calc vo lume / 8 . 0 ;

}

Listing 4 is a for-loop, iterating on the nodes, set by the
developer to be triggered at the logical time ’-6.9’. This
job uses in its body the ’∀’ token, which starts another for-
loop, for each cell the current node is connected to.

Listing 5: ∇ Job Declaration, another on cells
ce l l s void temporalComputeStdFluxesSum (void )

in ( ce l l r econs t ructed u , node u ,
ce l l r econs t ructed p ,
ce l l CQs, ce l l AQs)

out ( ce l l momentum fluxes Σ ,
ce l l t o t a l e n e r g y f l u x e s Σ) @ 16 .0 {

foreach node{
const Real3 ∆u = recons t ructed u−u ;
Real3 FQs = AQs ? ∆u ;
FQs += recons t ruc t ed p ∗CQs ;
momentum fluxes Σ −= FQs ;
t o t a l e n e r g y f l u x e s Σ −= FQs · u ;

}
}

The job in Listing 5 illustrates an explicit scheme [8]. It is
a for-loop on cells, triggered at the logical time ’+16.0’, and
with an inner connectivity loop on each of the cell’s nodes.
Two mathematical operators are used in this job: the vector
dot product ’·’ and the matrix vector product ’?’.

Listing 6: ∇ Job Declaration Statement
ce l l s void calcEnergyForElems1 (void )

in ( ce l l e o ld , ce l l delvc ,
ce l l p old , ce l l q old , ce l l work )

inout ( ce l l e new ) @ 7 .1 {
e new = e o ld−1

2∗ de lvc ∗( p o ld+q o ld )+1
2∗work ;

e new = ( e new<opt ion emin ) ? opt ion emin ;
}

Listing 6 comes from the proxy application Lulesh [17], dur-
ing the equation of state phase. It is a cell job, working on
some of its variables and set to be launched at logical time
’7.1’. It shows the use of the ’?’ binary operator, which
changes the ternary standard C ’?:’, by allowing to omit
the ’else’ (’:’) statements, meaning here ’else unchanged ’.

Listing 7: ∇ Implicit Job: filling a matrix
nodes void δNodes (void )

in ( face δ ,
node θ ,
node node area ,
node node i s an edge ,
face Cosθ , face sd i v s ) @ 3 .4 {

Real δn ,Σδ=0.0;
i f ( node i s an edge ) continue ;
foreach face {

Node other=(node[0]== this ) ?node [ 1 ] : node [ 0 ] ;
δn=δ/ node area ;
Σδ+=1.0/(Cosθ∗ sd i v s ) ;
ℵ matrix addValue( θ , this , θ , other ,−δn) ;

}
Σδ∗=δ t / node area ;
ℵ matrix addValue( θ , this , θ , this ,1 .0+Σδ ) ;

}

The job in Listing 7 is a for-loop on each node of the domain.
It is set to be triggered at ’+3.4’. The aleph (ℵ) library to-
ken and its programming interface is used to fill the matrix.
The degrees of freedom are deduced by the use of pairs of
the form: (item,variable). Two degrees of freedom are used
here: (θ,this) and (θ,other).

More simple jobs can be expressed, like the one presented in
Listing 8. It is one of the two reductions required at the end
of each iteration in the compute loop of Lulesh. δt hydro is
the global variable and the δt cell hydro is the one attached
to each cell. It is here a minimum reduction over all the cells.

Listing 8: ∇ Reduction Statement
∀ ce l l s δ t hydro <?= δ t c e l l h y d r o @ 1 2 . 2 2 ;

The different ’@’ attributes are then gathered and combined
hierarchically by the toolchain, in order to create the logi-
cal time triggered execution graph, used for the scheduling
of all functions and jobs of the application. Next section
introduces the composition of such logical time statements.

4. HIERARCHICAL LOGICAL TIME
The introduction of the hierarchical logical time within the
high-performance computing scientific community represents
an innovation that addresses the major exascale challenges.
This new dimension to parallelism is explicitly expressed
to go beyond the classical single-program-multiple-data or
bulk-synchronous-parallel programming models. The task-
based parallelism of the ∇ jobs is explicitly declared via
logical-timestamps attributes: each function or job can be
tagged with an additional ’@’ statement. The two types of
concurrency models are used: the control-driven one comes
from these logical-timestamps, the data-driven model is de-
duced from the in, out or inout attributes of the variables
declaration. These control and data concurrency models are
then combined consistently to achieve statically analyzable
transformations and efficient code generation.

By gathering all the ’@’ statements, the ∇ compiler con-
structs the set of partially ordered jobs and functions. By
convention, the negative logical timestamps represent the
initialization phase, while the positive ones compose the
compute loop. You end up with an execution graph for
a single ∇ component.



Table 1: ∇ Logical Time Diagrams: a is the
totally-ordered time-diagram from a typical mini-
application ported to ∇ with consecutive for-loops;

b is the diagram of a better partially-ordered nu-
merical scheme. Colors stand for the job items.

a b

Table 1 presents two kinds of execution graphs: the first
one (a) is taken from a typical proxy application, as the sec-
ond one (b) comes from a new implicit numerical scheme
[7], designed and written in ∇ entirely. No additional paral-
lelism lies in the first totally-ordered diagram, whereas the
second one exposes a new dimension that can be exploited
for scheduling.
Each ∇ component can be written and tested individually.
A nested composition of such logical-timed components be-
comes a multi-physic application. Such an application still
consists in a top initialization phase and a global computa-
tional loop, where different levels of ∇ components can be
instantiated hierarchically, each of them running there own
initialization/compute/until-exit parts. This composition is
actually done by the compiler with command line options;
the need of frontend tools will rapidly be crucial as applica-
tions grow bigger.

5. THE NABLA TOOLCHAIN
The ∇ toolchain is composed of three main parts, illustrated
in Figure 1. The frontend is a Flex [1] and Bison [2] parser
that reads a set of ∇ input files. The middle-end provides
a collection of software engineering practices, transparently
to the application developer. Instrumentation, performance
analysis, validation and verification steps are inserted during
this process. Data layout optimizations can also take place
during this phase: locality, prefetching, caches awareness
and loop fusion techniques are in development and will be
integrated in the middle-end.

Figure 1: The three parts of the ∇ Toolchain: the
Sources Analysis (Frontend), the Optimizations &
Transformations (Middle-end) and the Generation
Stages (Backends).

The backends hold the effective generation stages for differ-
ent targets or architectures:

• ARCANE [13]. It is a numerical code framework
for high-performance computing. It provides multiple
strategies of parallelism: MPI, threads, MPI+threads
and the Multi-Processor Computing framework (MPC)
[24].

• CUDA [25, 22]. CUDA is a programming model to
target NVIDIA’s graphics processing unit (GPU). The
∇ compiler generates homogenous source files: all the
numerical kernels run exclusively on the GPU. Initial
speedups have been achieved with only minimal initial
investment of time for this backend: further optimiza-
tion opportunities are to be identified and deployed.

• OKINA. This standalone backend comes with the ∇
toolchain. C/C++ source files are generated: the code
is fully-vectorized by the use of intrinsics classes. The
choice of underlying data structures is possible for dif-
ferent hardwares: specific layouts with their associated
prefetch instructions or the Kokkos [12] abstraction
layer, are two examples. For now, only OpenMP 4.0
[23] and Cilk+ [3] can be used as underlying parallel
execution runtimes.

As a demonstration of the potential and the efficiency of this
approach, the next section presents the Lulesh benchmark,
implemented in ∇. The performances are evaluated for a
variety of hardware architectures.



6. ∇-LULESH EXPERIMENTAL RESULTS
The Lulesh benchmark solves one octant of the spherical
Sedov blast wave problem using Lagrangian hydrodynamics
for a single material. Equations are solved using a staggered
mesh approximation. Thermodynamic variables are approx-
imated as piece-wise constant functions within each element
and kinematic variables are defined at the element nodes.
For each figure, cells-updates-per-µs for different kind of
runs are presented. On Figures 2 and 3, yellow bars show
the reference performances of the downloadable version, the
violet ones are obtained with the hand-optimized OpenMP
version and finally, blue ones are the performances reached
from the ∇-Lulesh source files and the OKINA backend.

Figure 2: Reference (ref.), Optimized (Optim.) and
∇ Lulesh Performances Tests on Intel Xeon-SNB
with the C/C++ Standalone OKINA+OpenMP
Backend and no-vec., SSE or AVX Intrinsics. Higher
is better.

Figure 2 shows the results obtained on Xeon Sandy Bridge
E5-2680@2.7GHz architectures. Different kinds of vector-
ization are represented for each run: no-vectorization, only
SSE and full AVX. The ∇-Lulesh version presents a simi-
lar level of performances as the optimised one, despite the
scatter and gather instructions generated by the backend
which are emulated by software on this architecture.

Figure 3: Reference (ref.), Optimized (Optim.) and
∇ Lulesh Performances Tests on Intel Xeon PHI
with the C/C++ Standalone OKINA+OpenMP
Backend and AVX512 Intrinsics

Figure 3 shows the performances obtained on Intel Xeon-
PHI processors with the AVX512 vectorization intrinsics.
In this example, the scatter and gather operation codes,
supported by the hardware, are not emulated anymore and
a higher level of performances is reached, better than the
hand-tuned version.

Figure 4: ∇-Lulesh Speedups on Intel Xeon PHI:
A speedup of more than one hundred is reached for
a mesh of 125000 Elements with 240 Threads

Figure 4 shows the speedup with the OKINA+OpenMP
backend that is reached for different runs. The number of
cells are presented on the X-axis, the number of threads used
on the Y-axis. The 3D-surface renders in hot colors where
the application starts taking advantage of hyper-threading
on this architecture. A speedup of more than a hundred is
reached for a mesh of more than one hundred thousands of
cells on more than two hundreds of threads.

Figure 5: ∇-Lulesh Speedups on a quad core Intel
Xeon Haswell: the OKINA+OpenMP backend vs
other OpenMP versions

Finally, Figure 5 presents the performance results on a sin-
gle Intel Xeon Haswell E3-1240v3 at 3.40GHz of different
OpenMP versions of Lulesh. The LULESH-OMP one can be
downloaded and is the reference in this test. The LULESH-

OPTIM-OMP-ALLOC is an optimized version and the BestSandy
is the fastest that can be found on the web site: it stands
for the best candidate with OpenMP. The last one is the ∇-
Lulesh version with OKINA. The 3D-surface renders again
in hot colors the best speedups that are reached for different
mesh sizes and for the different versions. The results of the
OKINA backend are as good as the BestSandyICC ones: the
back of the surface stays on the same level of speedup.

These results emphasize the opportunity for domain-specific
languages. Doing so opens up a potential path forward for
enhanced expressivity and performance. ∇ achieves both
portably, while maintaining a consistent programming style
and offering a solution to the productivity issues.



7. DISCUSSION AND FUTURE WORK
The numerical-analysis specific language Nabla (∇) provides
a productive development way for exascale HPC technolo-
gies, flexible enough to be competitive in terms of perfor-
mances. The refactoring of existing legacy scientific appli-
cations is also possible by the incremental compositional ap-
proach of the method. Raising the loop-level of abstractions
allows the framework to be prepared to address growing con-
cerns of future systems. There is no need to choose today
the best programming model for tomorrow’s architectures:
∇ does not require to code multiple versions of kernels for
different models.
Nabla’s source-to-source approach and its exclusive logical
time model will facilitate future development work, focusing
on new backends: other programming models, abstraction
layers or numerical frameworks are already planned.
The generation stages will be improved to incorporate and
exploit algorithmic or low-level resiliency methods by coor-
dinating co-designed techniques between the software stack
and the underlying runtime and operating system.
∇ is open-source, ruled by the French CeCILL license, which
is a free software license, explicitly compatible with the GNU
GPL.
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